Numerical Solution of Parabolic Problems Based on a Weak Space-Time Formulation
نویسندگان
چکیده
We investigate a weak space-time formulation of the heat equation and its use for the construction of a numerical scheme. The formulation is based on a known weak space-time formulation, with the difference that a pointwise component of the solution, which in other works is usually neglected, is now kept. We investigate the role of such a component by first using it to obtain a pointwise bound on the solution and then deploying it to construct a numerical scheme. The scheme obtained, besides being quasi-optimal in the L2 sense, is also pointwise superconvergent in the temporal nodes. We prove a priori error estimates and we present numerical experiments to empirically support our findings.
منابع مشابه
A truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملFractional Space - Time Variational Formulations of ( Navier – )
Well-posed space-time variational formulations in fractional order Bochner–Sobolev spaces are proposed for parabolic partial differential equations, and in particular for the instationary Stokes and Navier–Stokes equations on bounded Lipschitz domains. The latter formulations include the pressure variable as a primal unknown and so account for the incompressibility constraint via a Lagrange mul...
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملOn the Weak Solution of Moving Boundary Problems
The weak formulation of moving boundary problems with possibly vanishing specific heat, that is governed by parabolic and/or elliptic differential equations, is developed. The uniqueness of the resulting weak solution is then proved. This approach is used to obtain numerical solutions to some physical examples, which arise in electrochemical machining processes, and in saturated / unsaturated f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 17 شماره
صفحات -
تاریخ انتشار 2017